Worse than the Disease? Reviewing Some Possible Unintended Consequences of the mRNA Vaccines Against COVID-19

All Global Research articles can be read in 51 languages by activating the “Translate Website” drop down menu on the top banner of our home page (Desktop version). 

Visit and follow us on Instagram at @crg_globalresearch.

***

Abstract

Operation Warp Speed brought to market in the United States two mRNA vaccines, produced by Pfizer and Moderna. Interim data suggested high efficacy for both of these vaccines, which helped legitimize Emergency Use Authorization (EUA) by the FDA. However, the exceptionally rapid movement of these vaccines through controlled trials and into mass deployment raises multiple safety concerns. In this review we first describe the technology underlying these vaccines in detail. We then review both components of and the intended biological response to these vaccines, including production of the spike protein itself, and their potential relationship to a wide range of both acute and long-term induced pathologies, such as blood disorders, neurodegenerative diseases and autoimmune diseases.

Among these potential induced pathologies, we discuss the relevance of prion-protein-related amino acid sequences within the spike protein.

We also present a brief review of studies supporting the potential for spike protein “shedding”, transmission of the protein from a vaccinated to an unvaccinated person, resulting in symptoms induced in the latter.

We finish by addressing a common point of debate, namely, whether or not these vaccines could modify the DNA of those receiving the vaccination. While there are no studies demonstrating definitively that this is happening, we provide a plausible scenario, supported by previously established pathways for transformation and transport of genetic material, whereby injected mRNA could ultimately be incorporated into germ cell DNA for transgenerational transmission.

We conclude with our recommendations regarding surveillance that will help to clarify the long-term effects of these experimental drugs and allow us to better assess the true risk/benefit ratio of these novel technologies.

Introduction

Unprecedented. This word has defined so much about 2020 and the pandemic related to SARS-CoV-2. In addition to an unprecedented disease and its global response, COVID-19 also initiated an unprecedented process of vaccine research, production, testing, and public distribution (Shaw, 2021). The sense of urgency around combatting the virus led to the creation, in March 2020, of Operation Warp Speed (OWS), then-President Donald Trump’s program to bring a vaccine against COVID-19 to market as quickly as possible (Jacobs and Armstrong, 2020). OWS established a few more unprecedented aspects of COVID-19. First, it brought the US Department of Defense into direct collaboration with US health departments with respect to vaccine distribution (Bonsell, 2021). Second, the National Institutes of Health (NIH) collaborated with the biotechnology company Moderna in bringing an unprecedented type of vaccine against infectious disease to market, one utilizing a technology based on messenger RNA (mRNA) (National Institutes of Health, 2020).The confluence of these unprecedented events has rapidly brought to public awareness the promise and potential of mRNA vaccines as a new weapon against infectious diseases into the future. At the same time, events without precedent are, by definition, without a history and context against which to fully assess risks, hoped-for benefits, safety, and long-term viability as a positive contribution to public health.

In this paper we will be briefly reviewing one particular aspect of these unprecedented events, namely the development and deployment of mRNA vaccines against the targeted class of infectious diseases under the umbrella of “SARS-CoV-2.” We believe many of the issues we raise here will be applicable to any future mRNA vaccine that might be produced against other infectious agents, or in applications related to cancer and genetic diseases, while others seem specifically relevant to mRNA vaccines currently being implemented against the subclass of corona viruses.

While the promises of this technology have been widely heralded, the objectively assessed risks and safety concerns have received far less detailed attention. It is our intention to review several highly concerning molecular aspects of infectious disease-related mRNA technology, and to correlate these with both documented and potential pathological effects.

Read the full article here.

*

Note to readers: Please click the share buttons above or below. Follow us on Instagram, @crg_globalresearch. Forward this article to your email lists. Crosspost on your blog site, internet forums. etc.

Featured image:  A hand holding an mRNA vaccine vial. (Spencer Davis / Unsplash)


Disclaimer: The contents of this article are of sole responsibility of the author(s). The Centre for Research on Globalization will not be responsible for any inaccurate or incorrect statement in this article. The Centre of Research on Globalization grants permission to cross-post Global Research articles on community internet sites as long the source and copyright are acknowledged together with a hyperlink to the original Global Research article. For publication of Global Research articles in print or other forms including commercial internet sites, contact: [email protected]

www.globalresearch.ca contains copyrighted material the use of which has not always been specifically authorized by the copyright owner. We are making such material available to our readers under the provisions of "fair use" in an effort to advance a better understanding of political, economic and social issues. The material on this site is distributed without profit to those who have expressed a prior interest in receiving it for research and educational purposes. If you wish to use copyrighted material for purposes other than "fair use" you must request permission from the copyright owner.

For media inquiries: [email protected]